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Abstract

Purpose—There has not been a recent comprehensive effort to examine existing studies on the 

resting metabolic rate (RMR) of adults to identify the effect of common population demographic 

and anthropometric characteristics. Thus, we reviewed the literature on RMR (kcal·kg−1·h−1) to 

determine the relationship of age, sex, and obesity status to RMR as compared with the commonly 

accepted value for the metabolic equivalent (MET; e.g., 1.0 kcal·kg−1·h−1).

Methods—Using several databases, scientific articles published from 1980 to 2011 were 

identified that measured RMR, and from those, others dating back to 1920 were identified. One 

hundred and ninety-seven studies were identified, resulting in 397 publication estimates of RMR 

that could represent a population subgroup. Inverse variance weighting technique was applied to 

compute means and 95% confidence intervals (CI).

Results—The mean value for RMR was 0.863 kcal·kg−1·h−1 (95% CI = 0.852–0.874), higher for 

men than women, decreasing with increasing age, and less in overweight than normal weight 

adults. Regardless of sex, adults with BMI ≥ 30 kg·m−2 had the lowest RMR (<0.741 

kcal·kg−1·h−1).

Conclusions—No single value for RMR is appropriate for all adults. Adhering to the nearly 

universally accepted MET convention may lead to the overestimation of the RMR of 

approximately 10%for men and almost 15% for women and be as high as 20%–30% for some 

demographic and anthropometric combinations. These large errors raise questions about the 

longstanding adherence to the conventional MET value for RMR. Failure to recognize this 

discrepancy may result in important miscalculations of energy expended from interventions using 

physical activity for diabetes and other chronic disease prevention efforts.
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Resting metabolic rate (RMR), also called resting energy expenditure, is important to 

understand because it typically accounts for the largest portion of total energy needs (6). 

RMR is typically defined as the energy required by the body in a resting condition (3). The 

definition can be further refined as the amount of energy expended when the individual is 

awake, in a postabsorptive, thermoneutral state while having not exercised for typically 12 h 

(10). RMR has been measured either in the sitting or supine positions, with a minimum of 

15 min of rest, sometimes up to an overnight rest. Resting and basal metabolic rate (BMR) 

are similar and only differ in that BMR is usually measured in the morning, after an 

overnight fast, no exercise for the previous 24 h, free from emotional stress, familiar with 

the apparatus, and the subject completely rested (27). In general, RMR may be a better 

indicator of daily energy needs than BMR (15). Although there have been comparative 

studies on the influence of sex, age, and obesity status on BMR, which have resulted in 

prediction equations, there is little comprehensive comparative data on the influence of sex, 

age, and obesity status on RMR. Studies have shown differences in RMR between men and 

women (4,12,13,19,27), between obese and nonobese adults (6,11), and possibly racial/

ethnic differences (25). Furthermore, older adults (>70 yr) have lower RMRs than younger 

adults (30,33) by as much as 20%–25% (30). However, to our knowledge, there has not been 

an examination of combined effects of sex, age, and obesity status on RMR to approximate 

group characteristics normally encountered in public health efforts.

The metabolic equivalent (MET) is a common term used by exercise physiologists, 

epidemiologists, and the medical community to express RMR. In addition, energy demands 

of various physical activities have been represented by multiples of a MET, made relative to 

RMR (1–3). The concept of a MET has been in use for quite some time (17), but the exact 

derivation is not known (13). The conventional definition of one MET is 3.5 mL oxygen per 

kilogram body mass per minute (3.5 mL·kg−1·min−1) and is assumed to be approximately 

equal to 1 kcal·kg−1·h−1 or 4.184 kJ·kg−1·h−1 (1–3). In all three articles by Ainsworth et al. 

(1–3), the energy expenditure of a MET is noted to be imprecise and seen only as a means of 

classifying activities based on the expected intensity of typical activity participation when 

expressed as a multiple of 1 MET (1–3). Work by Byrne et al. (13) suggests that the use of 

the conventionally defined MET value often reflects an overestimate that does not apply 

well to all individuals nor to population subgroups. Unfortunately, applying a standard MET 

value to all individuals has attained widespread acceptance but has been questioned in the 

past decade by the scientific community (13,29,30).

A perusal of the RMR literature reveals that considerable information on studies of specific 

population subgroups (e.g., men, women, children, obese, and patient populations) is based 

primarily on relatively small sample sizes, or studies that were not intended to be population 

based (21). Although reviews have been completed (6,25,43), there has not been any 

comprehensive effort to assemble RMR estimates from existing studies to identify the 

combined effect of common demographic (sex and age) and obesity status (body mass 

index) characteristics that apply to groups of individuals encountered in the delivery of 

public health interventions. Such an effort is important because the convention of applying a 

single estimate of RMR to an entire population subgroup is likely to misrepresent expected 

energy costs of physical activity promotion intended to achieve, for example, energy balance 

among groups of men or women who are overweight or obese. In addition, the issue is 

McMurray et al. Page 2

Med Sci Sports Exerc. Author manuscript; available in PMC 2015 August 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



relevant to public health efforts that target groups of individuals for the delivery of physical 

activity programs, to say, older adult, overweight women versus younger, and obese men, in 

hopes of thwarting the growing diabetes epidemic (14). Thus, the purposes of this article 

were to examine the literature on RMR and to determine the extent to which age, sex, and 

obesity status relate to RMR as compared with the commonly accepted value for a MET.

METHODS

We perused scientific articles published between 1980 and 2011 to identify studies that 

measured RMR using PubMed, BIOSIS Previews, NTIS, EMBASE, MEDLINE, and Pascal 

databases. Several search terms were used, including RMR, resting energy expenditure, 

resting oxygen uptake (or V̇O2), healthy adults, and older healthy adults. To be included, the 

studies had to have directly assessed RMR using either oxygen uptake or a metabolic 

chamber in healthy adults. For purposes of this review, RMR was required to be measured in 

an awake adult, at least 3 h postprandial, in a thermoneutral state with no exercise for the 

previous 8 h (10). These criteria, although general, seemed to adequately represent normal 

daily life for an adult. Studies that examined cohorts having specific maladies were not 

included, unless they offered separate data for a healthy adult control group, which we could 

use separately in our analyses. RMR in units of kilocalories per kilograms per hour had to be 

available or be able to be computed from the data presented. For example, studies that 

reported their data in kilocalories per day, kilocalories per kilograms, or kilocalories per 

kilogram of fat-free mass (FFM) per day that also reported data for weight and body fat 

allowed us to compute RMR in kilocalories per kilograms per hour. In addition, the studies 

had to be published in peer-reviewed journals in English. While reading many of the papers, 

particularly their “methods and materials” sections, it became obvious that RMR data from 

the same subjects were frequently reported in two or more papers. Therefore, we used the 

first reported results and excluded the redundant paper reporting the same information. We 

made no attempt to find and use nonpublished data that may be available to avoid positive 

publication bias, nor did we attempt to contact authors to answer questions we might have 

about the data that was presented. When intervention studies reported baseline and outcome 

measures of RMR, we chose only to abstract the former estimates to facilitate comparisons 

with all other nonintervention studies under review. Differing specific methods for 

estimating RMR were used by studies (e.g., prior rest of 15–60 min, postprandial state of 3–

12 h, refraining from exercise 8–24 h, and supine versus sitting position). We recognize this 

as an inherent potential problem in making study-to-study comparisons, for which we could 

not control and we did not endeavor such comparisons with the groups of estimates we 

examined.

If a paper cited previous publications that provided unique information on RMR, we went 

back to that study to assess the relevance of its data for our review. In this manner, we 

identified publications from as far back as 1921, which we added to our systematic survey 

(dated before 1980 = 7 studies or 12 [<3%] of the publication estimates). The low number of 

studies was a result of 1) methods that measured basal and not RMR and 2) an incomplete 

search of all studies as mentioned previously. The search identified more than 600 

publications, but once the previously mentioned criteria were applied, only 197 studies 

remained. The 197 studies resulted in 410 publication estimates of RMR that could represent 
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a specific cohort or population subgroup. Of the 410 estimates, 13 did not provide standard 

errors and were eliminated yielding 397 population estimates. The studies included 11,951 

subjects, and the reported sex distribution was as follows: 52% as women, 39% as men, and 

9% with no indication of sex status. The ages of the participants ranged from 18 to older 

than 80 yr. We found limited studies particularly for oldest adult groups (≥75 yr) among 

whom RMR information for 80- to 90-yr-old adults was virtually absent. We did not 

consider the existing studies for this latter age group because they focused only on BMR and 

not RMR; hence, they failed to meet the inclusion criteria for our review. For a complete 

listing of all articles used for the analyses, contact the corresponding author.

The studies included a wide range of ages and sample sizes; therefore, we used several 

differing approaches to examine the data. To partition RMR publication estimates to 

examine the influence of sex and age, we first stratified all publication estimates by sex and 

then by 10-yr incremental age groupings using the mean age reported by a study. The 

relationship of relative weight with RMR was examined by stratifying publication estimates 

according to standard World Health Organization categories of BMI (kg·m−2): <25, normal; 

25–29.9, overweight; and ≥30, obese (47), and by sex. To examine the combinations of sex, 

age, and obesity status, we first stratified publication estimates by sex and BMI categories 

and then divided them into three classifications based on the mean age (yr) of the 

publication estimates: young (20–39 yr), middle age (40–54 yr), and older adult (55–74 yr). 

These age groupings seemed logical based on activity/life stages known to occur among 

adults (e.g., active early career and family, declining activity and more established career 

and family, and periretirement age, and postretirement or senescence). We acknowledge that 

this is an artificially crude set of distinctions compared with simply dividing the sample by 

decade of age, or many other potential approaches. However, we attempted to achieve a 

balance of meaningful distinctions to reflect population subgroups by age against 

partitioning the publication estimates so fine that error variances would render comparisons 

moot. As such, our process and final inclusion of studies should not be considered an 

“exhaustive,” fully standardized effort, and we readily acknowledge any unintended 

selection bias resulting from our decisions. Finally, because methodology and equipment 

have changed over the decades (15), we explored possible trends in the data by decade of 

study publication.

We used the Comprehensive Meta-Analysis statistical software (7) to estimate weighted 

means and 95% confidence intervals (95% CI) for each of the subgroups using the inverse 

variance weighting technique (32). Q-statistics were computed to evaluate the heterogeneity 

between sets of study estimates for contrasts of interest (e.g., RMR differences between all 

men and women). In the presence of significant heterogeneity, we used a random effects 

model, which occurred for all of the contrasts we explored. We used 95% CI to compare 

subgroups and conservatively inferred that when CI did not overlap, the mean estimates 

were significantly different (16). Doing so has the advantage of partially controlling for the 

overinterpretation that occurs when making multiple comparisons.
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RESULTS

The overall mean value for RMR from the 397 publication estimates for adults was 0.863 

kcal·kg−1·h−1 (95% CI = 0.852–0.874). Restricting our analyses to the available 351 sex-

specific publication estimates, the RMR of the women (n = 220) was found to be lower than 

that for the men (n = 131): 0.839 kcal·kg−1·h−1 (95% CI = 0.825–0.853) versus 0.892 

kcal·kg−1·h−1 (95% CI = 0.872–0.912), respectively. As anticipated, RMR decreased with 

age in both sexes; the 95% CI of the younger group (20–29 yr) did not overlap the two older 

groups (Fig. 1).

Figure 2 depicts RMR with respect to BMI group and sex for 278 publication estimates (165 

women and 113 men). For both sexes, RMR (kcal·kg−1·h−1) was highest in the normal 

weight group (women = 0.926, 95% CI = 0.908–0.945; men = 0.960, 95% CI = 0.934–

0.985), whereas the obese groups had the lowest RMR (women = 0.721, 95% CI = 0.684–

0.758; men = 0.791, 95% CI = 0.738–0.843).

Figure 3 combines age and BMI effects on RMR. For men, the RMR of those who were 

young and normal weight was the highest, for example, 1.007 kcal·kg−1·h−1 (95% CI = 

0.952–1.062), and as age group and BMI group increased, the RMR declined monotonically. 

For women, the trend was inconsistent. Like men, the RMR was highest for young, normal-

weight women: 0.918 kcal·kg−1·h−1 (95% CI = 0.869–0.958). RMR tended to decline with 

increasing BMI category within all three age groups. However, for the women who were in 

the two highest BMI categories, there appeared to be little influence of age.

DISCUSSION

These results from hundreds of study estimates suggest that there is considerable variability 

in the RMR of adults such that one standard value should not reasonably be used for adults 

of varying ages, sex, or obesity status. This opinion has been previously suggested by others 

(6,9,13) using more restricted data samples. As expected, the RMR of women was lower 

than that for men (4,12,13,19,27), and the RMR of older adults was less than that for 

younger adults (9,13,22). Some of the differences between the sexes and age groupings 

could be related to muscle mass being lower (e.g., less metabolically active tissue) in women 

and in older adults. RMR is mostly dependent on the amount of metabolically active tissue 

in an individual; mainly muscle mass (18,35). Our presentation of findings makes this 

pertinent for public health purposes by offering RMR estimates for groups of men and 

women by age and relative weight groups.

The results further suggest that RMR per total body mass among obese adults is lower than 

for normal-weight adults for both women and men (6,22,42). This makes sense because total 

mass is made up of both fat and FFM, with fat mass not appreciably contributing to 

metabolism (22,28). Hence, when, for example, one compares an obese person to a normal-

weight person having an identical amount of FFM, the obese person has a larger amount of 

fat mass that produces a greater total body mass. In this comparative example, RMR 

expressed per total FFM would be equal, whereas overall RMR, expressed per total body 

mass, must be smaller for the obese person having the greater total body mass. Intriguingly, 
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there seems to be some interaction of obesity with age in women as one study of severely 

obese women found that their absolute RMR (kcal·min−1) may remain stable with increasing 

cross-sectional age compared with declines found among leaner counterparts (34). Monda et 

al. (34) speculated that “the excessive body weight of severely obese women could be 

similar to a heavy-resistance strength training10 on the legs, so that the muscle mass of the 

legs does not decrease during aging,” which might potentially preserve FFM over time. 

Monda et al. (34) also suggested a potentially greater sympathetic tone, which contributes to 

the maintenance of muscle mass. Another possibility is brown adipose tissue, as 

Pfannenberg et al. (37) have shown that there is no BMI or age-related decline in the 

metabolic activity of brown adipose fat in women. These last two mechanisms are 

controversial and in need of further verification (41).

Overall, the effect of obesity on RMR has implications for determining the energy demands 

and needs for obese individuals, when using an RMR constant based on a normal-weight 

adult may result in biased estimates. On the basis of our results, the energy expenditure per 

kilogram of total body mass would be overestimated by approximately 20%–30% (Fig. 3). 

Extended over a period of a day, this could sum to a considerable amount of energy. In such 

cases, one should consider using absolute RMR (kcal·min−1 or kJ·min−1) rather than energy 

expenditure per kilogram body mass.

Body composition, both FFM and fat mass, contributes to RMR (4,19,33,35,36,40). 

Although several studies reported either body fat or FFM, we were unable to complete any 

meaningful systematic analysis because of dissimilar distributions of sex and age in those 

studies; both characteristics are known to influence RMR (4,10, 21,23). Specifically, we 

found that for the same FFM of 50–59 kg, 21 publication estimates yielded an average of 

0.736 (95% CI = 0.679–0.793) mL·kgFFM
−1·min−1 for women whose mean ± SD age was 

34.2 ± 4.96 yr and for 26 publication estimates of men with an average of 0.848 

mL·kgFFM
−1·min−1 (95% CI = 0.824–0.872); however, their mean age was 59.3 ± 20.5 yr. 

Thus, large-scale studies on the interactions of sex, age, and FFM on RMR are needed.

We explored the relationship of vintage of the data to our results because selected samples 

and research methods have changed considerably over the time period for which we had 

publication estimates. The mean RMR from studies post-1980 appears to be lower than that 

for pre-1980 studies, roughly 0.86 versus 1.0 kcal·kg−1·h−1, respectively. There are several 

possible explanations for these differences. First, earlier studies were completed mostly on 

young, relatively lean men, with very few studies focused on women. Men at that earlier 

point in time tended also to be leaner (with a lower BMI) and have a correspondingly higher 

RMR on a total body mass basis. Second, the U.S. population since the 1980s is more 

overweight than previous generations of adults (45), which would result in a lower RMR per 

kilogram body mass, as we have seen. Third, many methodological changes may have 

occurred in equipment and better standardization of procedure (15) that could account for 

some of the difference. Thus, our results cannot be interpreted to imply a definitive 

reduction in RMR per kilogram body mass over the decades. Intriguingly, the RMR of those 

earliest six studies approximates 1 kcal·kg−1·h−1, which might account for the development 

and use of the MET convention being set at that level, a concept that has persevered for 

almost three quarters of a century.
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Although the MET may be a good method to classify intensities of activities, our results 

suggest that the current definition of a MET may significantly overestimate the RMR of 

adults, particularly among women and older adults; thus, our findings agree with others 

using smaller bodies of evidence (13,29,30). When attempting to estimate energy 

expenditure of adults using the MET approach, if one knew nothing of the effects of age (or 

BMI) on RMR, then a better estimate may be 0.89 kcal·kg−1·h−1 for men and 0.84 

kcal·kg−1·h−1 for women. Doing so would result in an estimate of oxygen uptake that would 

more closely approximate 3 mL·kg−1·min−1 for men and 2.8 mL·kg−1·min−1 for women. 

However, efforts beyond the one described here, particularly using individual RMR data to 

properly address both intra- and interindividual variability in the metric, are needed to 

develop appropriate values for the extremes in age and body fat for each sex. We believe the 

additional effort may be worthwhile because recent public health interventions, such as the 

National Diabetes Prevention Program (14) seek to prevent or delay the development of 

diabetes among high-risk adults via lifestyle intervention that includes physical activity to be 

targeted to groups of adults who may vary on sex, age, and overweight/obesity status. Also, 

given the recent interest in the role of sitting in the development of chronic diseases such as 

diabetes and cardiovascular disease (46), it is important to recognize just how low rates of 

energy expenditure might be for groups in the rested sitting state to appreciate how much 

activity breaks may help to raise energy expenditure to a higher level.

Our review has several limitations. The studies included cannot be considered to be a totally 

synoptic review of all RMR measurement studies that have been undertaken and published. 

Many studies measured RMR as a descriptive variable, not as their main focus. Although we 

made an attempt to eliminate studies using highly questionable methodology, there is really 

no way to guarantee that data from marginal studies have not affected our findings. We 

eliminated studies that specifically reported BMR. Many studies did not report the duration 

of postprandial state (e.g., 3 h vs 6 h vs 9 h, etc.) or prior rest. However, when this 

information was available, we eliminated studies with less than 3-h postprandial because the 

greatest thermic effect occurs during this period (39), or with less than 15 min of rest before 

measurement. Regardless, to our knowledge, our review is the only one to take a public 

health perspective that identifies potential population group differences in RMR for 

combinations of demographic and anthropometric characteristics. As with any review of this 

type, various methods and equipment were used to measure RMR in each study, which 

changed over time. For example, some older studies may not meet “best 

practice”methodology as currently defined (15), whereas studies that measured RMR as an 

ancillary variable may not have followed a rigorous measurement protocol for RMR 

assessment.

Other issues influencing RMR

Race/ethnicity may influence RMR. In a study of children matched for BMI or body fat, 

African Americans had approximately a 10%–20% lower RMR than Caucasians (25,31). 

African Americans also have been found to have less fat than Caucasians or Hispanics (31) 

and organ weights that vary significantly among different ethnic groups (23,24). Each of 

these ethnic factors may influence RMR. However, the literature on RMR is quite clear that 

the location of fat mass in the body is also important in understanding RMR 
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(5,8,24,28,35,42). Furthermore, aerobic fitness (20), or physical activity level (43,44), may 

influence RMR, but the absolute change is controversial (26,38). We did not have available 

to us any observations relating organ-specific metabolic rates, location of body fat, 

consistent ethnic identifiers, nor physical activity or physical fitness parameters for all 

participants to examine these potential influences. This is not to be a critical limitation 

because the purpose of our review was to examine the effect of three characteristics 

commonly encountered in the delivery of public health interventions (e.g., age, sex, and 

obesity status) on RMR and how it compares to the commonly accepted value for a MET. 

This may, nonetheless, be fruitful areas for future research.

In conclusion, our review identified hundreds of publication estimates of measured RMR to 

reflect groups of individuals that vary according to sex, age, and obesity status to be 

congruent with a public health perspective. We found that adhering to the nearly universally 

accepted convention of defining 1 MET as 1.0 kcal·kg−1·h−1 (or 3.5 mL O2·kg−1·min−1) may 

lead to the overestimation of the RMR of approximately 10% for men and almost 15% for 

women and may reach as high as 20%–30% in some instances for groups varying by these 

three common demographic and anthropometric characteristics. Given these errors in 

estimating RMR, one must carefully consider the longstanding adherence to using the 

conventional MET value for RMR. Even 2% error is a large imbalance taken over an 

extended time period. Because of existing public health efforts to address things such as 

diabetes epidemic, having better estimations of RMR, particularly for groups of women and 

older adults, may help better to plan and achieve intervention outcomes of intervention 

programs that target such groups of individuals. It is possible that failure to do so may result 

in important miscalculations of the expected gains from diabetes and other chronic disease 

prevention efforts that rely on lifestyle interventions based, in part, on physical activity 

promotion.
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FIGURE 1. 
Adjusted mean with 95% CI for the RMR (kcal·kg−1·h−1) for adults from 351 publication 

estimates presented by nine age groupings and sex. The number of publication estimates in 

each category is included on the x-axis for men (M) and women (W). Solid line = 1.0 

kcal·kg−1·h−1.
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FIGURE 2. 
Adjusted mean with 95% CI for the RMR (kcal·kg−1·h−1) for adults from 278 publication 

estimates, based on BMI (kg·m−2) categories of normal (< 25), overweight (25–29.9), and 

obese (≥ 30) adults presented by sex. The number of publication estimates in each category 

is included on the x-axis for men (M) and women (W). Solid line = 1.0 kcal·kg−1·h−1.
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FIGURE 3. 
Adjusted mean with 95% CI for the RMR (kcal·kg−1·h−1) for adults from 266 publication 

estimates, presented by sex, three age groupings, and BMI. The number of publication 

estimates for BMI groups is included on the x-axis for normal weight (Nm), overweight 

(Ov), and obese (Ob). Solid line = 1.0 kcal·kg−1·h−1.
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